If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-3500=0
a = 1; b = 1; c = -3500;
Δ = b2-4ac
Δ = 12-4·1·(-3500)
Δ = 14001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{14001}}{2*1}=\frac{-1-\sqrt{14001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{14001}}{2*1}=\frac{-1+\sqrt{14001}}{2} $
| (-4x+7)-(-7x-8)=0 | | 4+4n=7n+6n-5 | | 5+2x=3x-4 | | 4x-5=6x+14 | | 5(f-9)=-30 | | 15n=4.5 | | 250.5m+35=300m+45.25 | | -69=7v-6 | | 4p=3p-9 | | 6x+7=-5 | | .6x+7=-5 | | 1/6m=1.1 | | 3p−9=4p | | (4x-87)/7=0 | | 36=6/7m | | x+22.6=30.8 | | 3x(2x−1)+(2x−1)=0 | | 5=x÷-4-3 | | -3n(2n+1)=-5 | | 5=(z÷-4)-3 | | 2(7-8b)=32-10b | | 7m-17=17 | | -7x-15+9x-17=4 | | 6s=7.2 | | 2+x-5=-2x | | 3y–4=2y+6 | | 3(4s+4)=156 | | 45+3=x | | 7n+6n−5=4n+4 | | x/2+11=1/8 | | -(4x)^2+12x+240=0 | | 9b^2-3b-20=0 |